亚洲午夜精品在线一区,国产精品99精品久久久,久久嫩草精品久久久精品,国产福利刺激视频视频

您好, 歡迎來到儀器網(wǎng)

| 注冊| 產(chǎn)品展廳| 收藏該商鋪

13810146393

technology

首頁   >>   技術(shù)文章   >>   偏振二次諧波掃描成像系統(tǒng)助力PESHG納米尺在生物醫(yī)學與材料科學的應用潛力

北京卓立漢光儀器有限公司

立即詢價

您提交后,專屬客服將第一時間為您服務

偏振二次諧波掃描成像系統(tǒng)助力PESHG納米尺在生物醫(yī)學與材料科學的應用潛力

閱讀:42      發(fā)布時間:2025-5-29
分享:

本文引用自廈門大學楊志林教授和華中科技大學韓俊波研究員合作團隊2015年在《Nano Letters》雜志上發(fā)表的相關(guān)文章。本文已經(jīng)經(jīng)過作者同意,進行引用。相關(guān)信息如下:

Plasmon-Enhanced Second-Harmonic Generation Nanorulers with Ultrahigh Sensitivities

DOI: 10.1021/acs.nanolett.5b02569

Nano Lett. 2015, 15, 6716-6721

本篇文章的核心內(nèi)容是關(guān)于一種新型的非線性等離激元納米標尺(plasmon nanoruler),它利用表面等離激元增強二次諧波(PESHG)機制來實現(xiàn)超高靈敏度的納米尺度距離測量(如圖1所示)。

從研究背景來看,如眾*周知的原因:

  • 納米尺度測量的重要性:隨著納米技術(shù)的發(fā)展,對納米尺度特性的研究變得越來越重要。傳統(tǒng)的光學方法由于衍射極限的限制,難以實現(xiàn)納米級的空間分辨率。

  • 現(xiàn)有技術(shù)的局限性:現(xiàn)有的超分辨率光學技術(shù),如近場掃描光學顯微鏡(NSOM)、超分辨熒光顯微鏡、表面增強拉曼光譜(SERS)和尖*增強拉曼光譜(TERS),雖然取得了一定研究進展,但仍面臨挑戰(zhàn),如測量精度和信號穩(wěn)定性等問題。

1.png

圖1. PESHG納米標尺的系統(tǒng)描述

在研究方法上,本文作者設計了一種基于PESHG的非線性納米標尺,通過引入Au@SiO2(金核@二氧化硅殼)殼層隔離納米顆粒(SHINs),以精確調(diào)控納米間隙(gap)大小。

通過在金膜上放置具有不同厚度二氧化硅殼層的SHINs,構(gòu)建了film-SHIN構(gòu)型(如圖2所示)。使用可調(diào)諧的鈦寶石激光器進行SHG測量,入射角為45度,以優(yōu)化信號強度和減少背景噪聲。采用三維時域有限差分法(3D-FDTD)計算模擬以驗證實驗結(jié)果,并分析PESHG增強因子(PESHG-EF)與納米間隙大小之間的關(guān)系。從而得到了不錯的實驗結(jié)果。

2.png

圖2. SHIN薄膜相關(guān)形貌表征測試

最終的實驗結(jié)果顯示,SHG信號強度隨激發(fā)功率的增加呈二次方變化(如圖3a所示),且隨著激發(fā)波長從740 nm調(diào)諧到890 nm,發(fā)射峰位置從370 nm移動到445 nm,從而驗證了信號的非線性關(guān)聯(lián)性。

不僅如此,課題組還對于其他影響因素進行了判斷。

  • 納米間隙的影響:PESHG信號強度隨納米間隙大小的增加呈指數(shù)衰減,表明PESHG信號主要來源于film-NP納米間隙區(qū)域(如圖4所示)。

  • 基底依賴性:信號測量同樣在film-SHIN和film-NP構(gòu)型以及不同的基底(硅基底和金基底)上進行,泵浦波長為785nm(如圖3b所示)??梢姡^測到的二階非線性光學信號在film-SHIN(55@1@Au)構(gòu)型上信號達到最大值(具有較弱且較寬的雙光子激發(fā)發(fā)光背景),驗證了信號主要來源于納米間隙中激發(fā)的間隙電磁模式(如圖3d所示)。進一步,在金膜上的SHINs和裸金納米顆粒之間的PESHG信號比較結(jié)果表明,隔離硅殼不僅可以提供一個天然的納米間隙以通過近場耦合效應局域入射光場,還可以顯著避免上下表面之間的電荷交換帶來的信號淬滅。同時,在硅膜上的SHINs實驗表明,當排除金屬基底的影響時,PESHG強度顯著降低,表明在PESHG系統(tǒng)中,納米顆粒-金膜耦合誘導的間隙電磁模式而非顆粒間耦合在觀察到的PESHG信號中起主導作用。

偏振依賴性:PESHG信號強度最大值隨入射偏振角的變化呈周期性余弦波形,最大強度出現(xiàn)在p偏振角(即n*π,n=0,1,2)時(如圖3c所示),進一步證實了信號主要來源于納米間隙中激發(fā)的間隙電磁模式(如圖3d所示)。

本文中,重點使用了PESHG技術(shù):

通過將可調(diào)諧的鈦寶石激光聚焦到SHINs上,以45°的入射角照射,同時使用CCD相機收集反射散射的SHG信號來完成SHG的測量。由于減少了入射電場的平行分量,通過斜向入射可以顯著降低顆粒之間的耦合。由于40μm直徑的入射光斑遠大于SHINs的直徑,實驗觀察到的PESHG信號代表了亞單層SHIN系統(tǒng)的平均性能,使我們能夠最小化由于單個非球形納米顆粒形狀變化導致的信號偏差。

3.png

圖3. PESHG信號相關(guān)的激發(fā)功率、偏振極化和形貌材料變化關(guān)聯(lián)性及其對應的間隙電磁共振模式分析。

在本文中,入射角度和偏振其實都會對SHG的信號有著顯著的影響。在SHG實驗中,選擇45度入射角主要有以下幾個原因:

1. 優(yōu)化耦合效率

  • 增強電場耦合:45度入射角可以有效地激發(fā)該納米結(jié)構(gòu)中的間隙電磁共振模式。在以上角度下,入射光的電場分量能夠更有效地與納米結(jié)構(gòu)相互作用,從而增強電場耦合。這對于提高SHG信號的強度至關(guān)重要。

  • 減少平行分量:斜向入射(如45度)可以減少入射電場的平行分量,從而降低顆粒之間的耦合。這有助于減少由于顆粒間相互作用導致的信號干擾,使測量到的SHG信號更準確地反映納米顆粒與金屬基底間的納米間隙大小變化。

2. 提高信號強度

  • *大化SHG信號:實驗表明,45度入射角可以*大化SHG信號的強度。這是因為在這種角度下,入射光與納米結(jié)構(gòu)的相互作用最為有效,能夠產(chǎn)生更強的二次諧波信號。

  • 實驗驗證:在實驗中,通過調(diào)整入射角,研究人員發(fā)現(xiàn)45度入射角能夠產(chǎn)生*強的SHG信號。這表明在這種角度下,激發(fā)和再發(fā)射過程中的電磁場分布最為優(yōu)化。

3. 減少背景噪聲

  • 降低背景信號:45度入射角有助于減少背景噪聲。斜向入射可以減少直接反射和散射光的干擾,從而提高信號的信噪比。這對于檢測微弱的SHG信號尤為重要。

  • 提高測量精度:通過減少背景噪聲,實驗測量的精度和可靠性可以顯著提高。這對于精確測量納米結(jié)構(gòu)中的非線性光學效應至關(guān)重要。

4. 實驗設計的便利性

  • 對稱性考慮:45度入射角在實驗設計中具有一定的對稱性,便于實驗裝置的對準和調(diào)整。這種對稱性可以簡化實驗設置,提高實驗的可重復性和穩(wěn)定性。

  • 標準實驗配置:在許多光學實驗中,45度入射角是一個常用的選擇,因為它能夠平衡多種因素,如信號強度、背景噪聲和實驗裝置的復雜性。這種標準配置有助于實驗結(jié)果的比較和驗證。

5. 理論支持

  • 理論模擬:通過有限差分時域(FDTD)模擬,研究人員發(fā)現(xiàn)45度入射角能夠有效地激發(fā)納米結(jié)構(gòu)中的局域電磁場,從而增強SHG信號。這些模擬結(jié)果支持了實驗中選擇45度入射角的合理性。

  • 多極相互作用:在45度入射角下,納米顆粒與基底之間的多極相互作用可以被顯著激發(fā)。這種多極相互作用對于產(chǎn)生強的SHG信號至關(guān)重要。

偏振的影響,我們在下一篇推文中會繼續(xù)關(guān)注。

4.png

圖4. PESHG納米尺測量結(jié)果展示

最終,通過PESHG機制,作者成功實現(xiàn)了約1納米的空間分辨率,顯著提高了納米尺度距離測量的靈敏度。同時,通過改變二氧化硅殼的厚度,可以精確調(diào)控納米間隙大小,從而實現(xiàn)對PESHG信號的精確控制。

與傳統(tǒng)的線性等離激元納米標尺相比,PESHG納米標尺在光譜精度和信噪比方面具有顯著優(yōu)勢,能夠更準確地測量納米尺度距離。這種PESHG納米標尺有望在納米技術(shù)、生物醫(yī)學成像和材料科學等領(lǐng)域得到廣泛應用。

本文中的相關(guān)研究提供了一種全新的,具有超高靈敏度的光學測量方法,能夠突破傳統(tǒng)的光學衍射極限,實現(xiàn)納米尺度的精確測量,對于近場光學部SNOM,TERS等都有著比較好的參考價值。

通過實驗和模擬相結(jié)合的方法,深入理解了PESHG機制在納米尺度上的應用,為非線性光學和納米技術(shù)領(lǐng)域提供了新的理論依據(jù)。

總的來說,這篇文章展示了一種基于PESHG的新型非線性納米標尺的設計、實驗驗證和理論模擬,證明了其在納米尺度距離測量中的巨大潛力。

在此,特別恭喜廈門大學楊志林教授和華中科技大學韓俊波研究員合作團隊!

卓立漢光亦有參與。

最后,歡迎各位咨詢我們的SHG相關(guān)產(chǎn)品。

會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

您的留言已提交成功!我們將在第一時間回復您~
在線留言